Skip to content
Loading images.
Chemistry
Chemistry
Chemistry
Chemistry

Publications

Full-length Publications in Peer-Reviewed Scientific Journals since joining TAMU-Commerce 

  1. Ion Mobility – Mass Spectrometry Techniques for Determining the Structure and Mechanisms of Metal Ion Recognition and Redox Activity of Metal Binding Oligopeptides Enas N. Yousef, Ramakrishna Sesham, Jacob W. McCabe, Rajpal Vangala. and Laurence A. Angel  J. Vis. Exp. (151), e60102, doi:10.3791/60102 (2019).    Video URL: https://www.jove.com/video/60102

  2. Weak Acid-Base Interactions of Histidine and Cysteine Affect the Charge States, Tertiary Structure, and Zn(II)-binding of Heptapeptides Yu-Fu, Lin, Enas N. Yousef, Efren Torres, Linh Truong, James M. Zahnow, Cole B. Donald, Ying Qin, and Laurence A. Angel J. Am. Soc. Mass Spectrom. 2019, 30, 2068-2081.

  3. Direct Dynamics Simulations of Fragmentation of a Zn(II)-2Cys-2His Oligopeptide. Comparison with Mass Spectrometry Collision-Induced Dissociation Malik A. Rao, Yu-Fu Lin, Subha Pratihar, Laurence A. Angel, and William L. Hase J. Phys. Chem.  2019123, 6868-6885.

  4. Binding Selectivity of Methanobactin from Methylosinus Trichosporium OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II) McCabe, J. W.; Vangala, R. and Angel, L. A.  J. Am. Soc. Mass Spectrom. 201728, 2588-2601.

  5. Applying Ion Mobility – Mass Spectrometry Techniques for Explicitly Identifying the Products of Cu(II) Reactions of 2His-2Cys Motif Peptides Vytla, Y. and Angel, L.A. Analytical Chemistry, 2016, 88, 10925.

  6. The Multiple Conformational Charge States of Zinc(II) Coordination by 2His-2Cys Oligopeptide Investigated by Ion Mobility - Mass Spectrometry, Density Functional Theory and Theoretical Collision Cross Sections Wagoner, S. M.; Deeconda, M.; Cumpian, K. L.; Ortiz, R.; Chinthala, S. and Angel, L. A., J. Mass Spectrom.2016, 51, 1120.

  7. Probing the Stability of Insulin Oligomers Using Electrospray Ionization - Ion Mobility - Mass Spectrometry Boga Raja, U. K.; Injeti, S.; Culver, T.; McCabe, J. W.; Angel, L. A., Eur. J. Mass Spectrom. 2015, 21, 759.

  8. Redox Activity and Multiple Copper(I) Coordination of 2His-2Cys Oligopeptides Choi, D.; Alshahrani, A.; Vytla, Y.; Deeconda, M.; Serna, V. J.; Saenz, R. F. and Angel, L. A., J. Mass Spectrom. 2015, 50, 316.

  9. The pH Dependent Cu(II) and Zn(II) Binding Behavior of an Analog Methanobactin Peptide Sesham, R.; Choi, D.; Balaji, A.; Cheruku, S.; Ravichetti, C.; Alshahrani, A.; Nasani, M.; Angel, L. A., Eur. J. Mass Spectrom.2013, 19, 463.

  10. Analysis of Methanobactin from Methylosinus Trichosporium OB3b via Ion Mobility Mass Spectrometry Choi, D-W.; Sesham, R.; Kim, Y.; and Angel, L.A. Eur. J. Mass Spectrom., 2012, 18, 509.

  11. Ion Mobility - Mass Spectrometry Study of Metal Ion Labeling of the Conformational and Charge States of Lysozyme Angel, L.A. Eur. J. Mass Spectrom., 2011, 11, 207.

  12. Metal Complexes as Artificial Proteases in Proteomics: A Palladium(II) Complex Cleaves Various Proteins in Solutions Containing Detergents Miskevich, F.; Davis, A.; Leeprapaiwong, P.; Giganti, V.; Kostic, N.M.; Angel, L.A. J. Inorg. Biochem., 2011, 105, 675.

  13. Ion Mobility-Mass Spectrometry Study of Folded Ubiquitin Conformers Induced by Treatment with cis-[Pden(H2O)2]2+ Giganti, V.; Best, W.A; Kundoor, S.; Angel, L.A. J. Am. Soc. Mass Spectrom., 2011, 22, 300.

  14. Effects of Transition Metal Ion Identity & p-Cation Interactions in Metal-Bis(Peptide) Complexes Containing Phenylalanine Utley, B.; Angel, L.A. Eur. J. Mass Spectrom., 2010, 16, 631.

  15. Ion Mobility Mass Spectrometry of Au25(SCH2CH2Ph)18 Nanoclusters Angel, L.A; Majors, L.T.; Dharmaratne, A.C.; Dass, A.  ACS Nano, 2010, 4, 4691.

  16. Threshold Collision Induced Dissociation of Hydrogen-Bonded Dimers of Carboxylic Acids Jia, B.; Angel, L.A.; Ervin, K.M. J. Phys. Chem. A, 2008, 112, 1773.



Publications in Peer-Reviewed Scientific Journals before joining TAMU-Commerce
  1. Gas-Phase Acidity and the O-H Bond Dissociation Enthalpy of Phenol, 3-Methylphenol, 2,4,6-Trimethylphenol and Ethanoic Acid Angel, L.A.; Ervin, K.M. J. Phys. Chem. A2006110, 1039.

  2. Gas-Phase Reactions of Iodide Ion with Chloromethane and Bromomethane; Competition Between Nucleophilic Displacement and Halogen Abstraction Angel, L.A.; Ervin, K.M. J. Phys. Chem. A2004108, 9827.

  3. Competitive Threshold Collision-Induced Dissociation: Gas-Phase Acidity and O-H Bond Dissociation Enthalpy of Phenol Angel, L.A.; Ervin, K.M. J. Phys. Chem. A2004108, 8346. 

  4. Gas-Phase Hydrogen Atom Abstraction Reactions of S¯ with H2, CH4and C2HAngel, L.A.; Dogbevia, M.K.; Rempala, K.M.; Ervin, K.M. J. Chem. Phys.2003119, 8996.

  5. Gas-Phase SN2 and Bromine Abstraction Reactions of Chloride Ion with Bromomethane: Reaction Cross Sections and Energy Disposal into Products Angel, L.A.; Ervin, K.M. J. Am. Chem. Soc. 2003125, 1014.

  6. Dynamics of the Gas-Phase Reactions of Chloride Ion with Fluoromethane: High Excess Translational Activation Energy for an Endothermic SN2 Reaction Angel, L.A.; Garcia, S.P.; Ervin, K.M. J. Am. Chem. Soc. 2002124, 336.

  7. Dissociation Patterns of (H2O)n+ Cluster Ions, for n=2-6 Angel, L. Stace, A.J. Chem. Phys. Lett. 2001345, 277.

  8. Dynamics of the Gas-Phase Reactions of Fluoride Ions with Chloromethane Angel, L.A.; Ervin, K.M. J. Phys. Chem. A2001105, 4042.

  9. A Re-Appraisal of the Contribution from [O2.(H2O)n]+ Cluster Ions to the Chemistry of the Ionosphere Angel, L.; Stace, A.J. J. Phys. Chem. A, 1999103, 2999.

  10. The Critical Hydration Reactions of NO+ and NO2+  Angel, L. Stace, A.J. J. Chem. Phys. 1998109, 1713.

  11. Reactions of NO+ in Heterogeneous Water Clusters Angel, L.; Stace, A.J. J. Phys. Chem. A 1998102, 3037.

  12. The Reactions of NO2+ in Association with Heterogeneous Water Clusters Angel, L.; Stace, A.J. J. Chem. Soc. Faraday Trans. 199793, 2769.

Quick Links

Need an update?

To request a change to this page or to request access to make changes yourself, email helpdesk@tamuc.edu.