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Transonic point Bell X-1 exceeded
800 mph, M1.06 (1947)
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All sciences use 
numerical simulations

Astronomy is special in the 
strong shocks.



Why are the results different ?

Can I believe my simulation ?



Finite Difference 
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Smoothed Particle 
Hydrodynamics (SPH)
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Artificial viscosity



Why particle code ?
1. Multi-dimension

• 1-Dim. even in 3-Dim.

• Lagrangian .vs. Eurian
???



Kelvin-Helmholtz Inst.



Why particle code ?
II. Self-gravity

• Accurate in neighbors, and 
fast in remote

• Binary tree : Recursive 
Bisection Method (in 
parallelization) N logN instead of N2



FDM vs SPH

• Self-gravity, irregular geometry : SPH

• High energy explosion : FDM



Artificial viscosity

• essential for shocks

• turn on in approaching 
particles

• notorious side effects in 
a velocity shear (i.e. a 
keplerian disc)
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GodunovSPH

Riemann solver instead of the artificial viscosity
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GSPH can describe (strong) shocks without the AV !



Riemann problem
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Side effect of AV



Can we believe these ?



Convergence

Lax-Richtmyer (1956)

and

Lax-Wendroff (1960)

said that

“Conservation, Stability and Consistency

are essential for the Convergence”



Conservation

Growth or decay
due to a numerical error

numerical
scheme

or

or

Amplitude Error

Ak ⌘ Ak(t)



GSPH has no amplitude error, but..



Stability

Phase Error,
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Sound wave
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simulation has also been used to optimize experimental
strategies and to interpret experimental results.

In this paper, we present our inter-disciplinary simulation
methods and solutions for piezoelectric driven inkjets. Section
2 provides a brief description of piezoelectric driven inkjet and
its operating methods. Section 3 presents our inter-disciplinary
numerical simulation methods and results. Section 4 discusses
the resonating fluid dynamics and the development of a
reduced-order model. We conclude in Section 5.

2 DEVICE DESCRIPTION AND OPERATING
METHODS
Fig. 1 shows a schematic view of a piezoelectric inkjet. It
consists of a piezoelectric actuator that is mounted at one side
of a microfluidic channel. One end of the microfluidic channel
connects with a common liquid reservoir and the other end
narrows down to form a nozzle. Initially, surface tension
draws the liquid from the reservoir and fills the microfluidic
channel. A slight negative pressure is applied in the reservoir
to pin the liquid free surface at the nozzle opening that
prevents liquid from dripping out. To fire a droplet, a carefully
designed voltage waveform is applied to the piezoelectric
actuator. The resulting actuator deformation first enlarges the
microfluidic channel such that a negative pressure is generated
in the channel. The pressure propagates towards both ends of
the microfluidic channel and is reflected at the reservoir,
which acts as an open end (constant pressure), and at the
nozzle, which acts as a closed end (zero normal velocity). The
reflected pressures travel toward the channel center just in
time for the actuator to contract. The timing of the contraction
is designed so that the resulting positive pressure resonates
with the reflected pressures. As a result, the liquid movement
toward the nozzle acquires sufficient momentum to overcome
the surface tension and a liquid jet is ejected from the nozzle.
The velocity disparity along the jet works in concert with the
surface tension to break the jet into a discrete droplet. Inside
the microfluidic channel, the liquid is drawn from the
reservoir to replenish the liquid mass lost due to jetting, and
the liquid movement is dampened due to viscous shear.

Figure 1. Piezoelectric inkjet and its working principle.
Ideally, the next firing waveform arrives only after the liquid
kinetic energy in the microfluidic channel is dampened to
zero. In practice, to maximize the firing frequency and, thus,
the liquid flux, the second firing signal arrives as soon as the
liquid kinetic energy is greatly reduced to an acceptable level.
Consequently, there is a cycle to cycle interaction which

appears as a variation in drop volume and drop velocity over
firing frequencies.

The operation described above is referred to as “pull-push” or
“fill-before-firing”. This method provides higher drop volume
due to the utilization of resonating fluid dynamics. In addition,
the jet forms inside the nozzle and is not sensitive to the
quality of the nozzle surface area, which is a major cause of
unsatisfactory drop uniformity.

3 INTER-DISCIPLINARY SIMULATION METHODS
AND SOLUTIONS
A complex array of physics is involved in the piezoelectric
inkjet operation: coupled piezoelectric-mechanics transforms
the electric energy into the piezoelectric induced strain;
coupled fluid-structural interaction provides the structural
movement to excite the liquid inside the microfluidic channel
and the liquid pressure, in turn, affects the structural
deformation; carefully engineered viscoacoustic flow
harnesses liquid kinetic energy; free surface dynamics govern
the jetting formation, drop release, and liquid replenishment
within the microfluidic channel.

Figure 2. Inter-disciplinary simulation of piezoelectric
inkjet formation. Time interval is 6% of firing cycle.

There is no off-the-shelf simulation solution yet that can
provide a high fidelity, fully-coupled piezoelectric-structural-
viscoacoustic-free surface dynamics simulation solution with
reasonable computational time. We have developed our in-
house simulation solution by integrating specialty commercial
simulation packages and our custom codes. We selected
Abaqus (SIMULIA, Providence, RI) to provide the
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a larger positive pressure is added to the nozzle and the pressure squeeze the solder out of the nozzle. Finally, a small neg-
ative pressure is applied to the boundary of the nozzle and the solder is cut off from the nozzle to form the main droplet.

Fig. 5 also shows the variation of pressure at boundary condition (b). The simulation results for condition (b) are shown in
Fig. 9. A small positive pressure is applied to the nozzle, and then a large negative pressure wave is applied before forming
the biggest positive pressure. The negative pressure sucks the molten solder from the nozzle to the tube, and then a large
positive pressure is applied to squeeze the molten solder out. The molten solder forms a liquid column. The liquid column
divides into four minor droplets at the latter part of the printing process.

Fig. 10 shows the simulation results of droplet behavior for boundary condition (c). The relationship of pressure–time for
condition (c) is shown in Fig. 5. Positive pressure is applied for a long time but the pressure is not insufficient. The solder is
not jetted, but instead accumulates at the nozzle to form a big solder droplet.

4.4. Experiment results

Fig. 11 shows the single droplet formation process condition C in Table 2. At 447 ls, the leading part completely broke off
from the thread. In contrast, the surface tension of molten solder was high enough to sustain a maximum length of 69 lm
without breaking-off from the nozzle. Subsequently, the exhausted thread was pulled into the orifice of the print-head dur-
ing the period of 447–480 ls. Meanwhile, the morphology of the broken-off main droplet changed from a circle to an ellipse
and back to a circle at 450, 470, and 490 ls, respectively. After 600 ls, a spherical droplet with a diameter of 64 lm and a
velocity of 1.6 m/s was formed before hitting the substrate.

Fig. 12 shows the evolution of multiple-droplet formation under condition A in Table 2; tfall is 30 ls. The liquid was
exhausted from the nozzle at 385 ls and a prominent liquid column was formed. The liquid column grew gradually. At
425 ls, the characteristic shape of the liquid column could be divided into two parts; a circular leading part followed by
a thin thread-like tailing part. At 430 ls, the leading part was observed to break off from the thread, which was still con-
nected to the nozzle. The thread length extended to around 350 lm at 450 ls. At 470 ls, the thread became completely sep-
arated from the nozzle and appeared as a wave-like liquid column in the airborne stage. During 480–510 ls, the instability of
the liquid column introduced necking in the middle and resulted in the formation of four minor droplets. During 510–580 ls,
the number of droplets decreased via recombination of the rear droplet catching up with the front and merging. Eventually,
one primary droplet of 59 lm and two satellites (57 and 43 lm) were jetted for each cycle under condition A.

Fig. 13 shows big droplet dripping behavior under condition D in Table 2. Initially, chaotic droplets were jetted from the
nozzle and residue fluent solder partially stained around the orifice. When the chaotic droplets collided with residue solder
on the plate of the print-head, big beads immediately formed.

Fig. 9. Numerical results of column droplet.
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Phase error-free scheme is important in inkjet printers

Fromm’s scheme (1984)

Zeng (2009) Chang (2011)
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Consistency
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• Resemblance of PDE and the numerical equations
• Analysis of the truncation error
• Order of accuracy
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scheme



Numerical Surface 
tension

• SPH is inconsistent.

• The numerical surface 
tension appears due to 
the inconsistency.

KHI with GSPH 1167

Here, the normalization condition (equation 3) and the symmetry
property of the kernel function,
∫

x ′W (x − x ′, h) dx ′ = x, (5)

are used.
For a higher order of consistency, we need a higher moment of a

kernel function. For example, the second order of consistency needs
that the second moment of a kernel function should be∫

(x − x ′)2W (x − x ′, h) dx ′ = 0. (6)

However, it is impossible to achieve this with a non-negative kernel
function. Therefore, the order of consistency of the kernel approxi-
mation is less than 2 with a non-negative and normalized symmetric
kernel function.

For a more complete discussion, we may have to repeat the same
analysis above for the first derivative of f (x) also, because the hy-
drodynamic equations contain the first derivative of physical quan-
tities. However, it is not necessary to check the consistency only, so
omitted here. See Monaghan (1982) or Liu, Liu & Lamb (2003) for
the further details.

The consistency depends on the normalization condition of the
kernel. Therefore, the kernel approximation loses its zeroth-order
consistency if the normalization condition is not satisfied, for ex-
ample, at the edge of a dense cloud in a rarefied ambient medium.
However, the tests performed in A07 and also in Section 4 have cor-
rect boundary treatments, so the incompleteness of a kernel function
at the boundary is not a critical problem in the tests.

Although the kernel approximation has the consistency, it is not
directly used in the equations of SPH. Instead of the kernel approx-
imation, the particle approximation is used for the derivation of the
standard SPH equations, and is explained below.

2.3 Particle approximation

The particle approximation used in the standard SPH is given by

f SPH(x) =
∑

j

mj

ρ(xj )
f (xj )Wj, (7)

where Wj is W (x −xj, h).
We will repeat the same procedure performed in the previous

section to check the consistency of the particle approximation. For
the zeroth order, put a constant C0 instead of f (xj) of equation (7),
then

f SPH(x) = C0

∑

j

mj

ρ(xj )
Wj . (8)

The particle approximation can reproduce the constant function
when
∑

j

mj

ρ(xj )
Wj = 1. (9)

Equation (9) holds only in an even distribution of particles. There-
fore, the particle approximation loses its zeroth-order consistency
in an uneven distribution of particles, and eventually the standard
SPH is unable to converge to the actual solution in that situation.

This problem appears in the equation of motion of the standard
SPH. With a pressure equilibrium, one of the typical motion equa-
tion of the standard SPH without the artificial viscosity may be
written by

ai ≡ dvi

dt
= −P

∑

j

mj

(
1
ρ2

i

+ 1
ρ2

j

)
∂

∂xi

Wij , (10)

Figure 1. The black and blue solid lines are density and pressure profiles,
respectively. The dots on the lines denote the particle positions. They imple-
ment a density gradient with a pressure equilibrium. The particle distance
from the centre, x, is scaled by the smoothing length, h. The red solid
line with dots is the acceleration of particles calculated by the standard
SPH. The red solid line without dots shows the expected acceleration under
a pressure equilibrium. A repulsion happens at the density discontinuity,
and will damp the initial perturbation. Therefore, any instability across the
density gradient may be suppressed in the standard SPH.

where Wij is W (xi −xj, h), and the physical variables have their
usual meaning. Although a pressure equilibrium is assumed, the
hydrodynamic acceleration of particle i doesn’t vanish, so the par-
ticle will move. Fig. 1 shows this unphysical force. The calculated
acceleration (red solid line with dots) should vanish because the
pressure is constant across the density discontinuity. However, the
acceleration shows a repulsion of particles at the discontinuity. This
repulsion damps the initial perturbation and suppresses the KHI. It
will make a gap between the two different density layers as well.
Therefore, one may understand that the occurrence of the unphysi-
cal force across a density gradient in a pressure equilibrium is due
to the loss of the zeroth-order consistency.

The only way to eliminate the unphysical force is to make the
density term inside the parenthesis of equation (10) an even func-
tion. Especially, a uniform density field around particle i is the
interesting case, and this is why the KHI appears in the homoge-
neous density case (1:1 density contrast case) in A07. However, a
uniform distribution of particles is a special situation, not a general
one.

3 C O N S I S T E N C Y O F G O D U N OV SP H

3.1 Kernel convolution

The inconsistency of the standard SPH is due to equation (9), which
appears in the conversion from a continuum (the kernel approxi-
mation) to a particle system (the particle approximation). I02 and
Dilts (1999) pointed out equation (9) as a crude assumption, and
I02 suggested a density estimation at a arbitrary position x,

ρ(x) ≡
∑

j

mjWj . (11)

C⃝ 2010 The Authors. Journal compilation C⃝ 2010 RAS, MNRAS 403, 1165–1174

Cha et al. 2010



Numerical surface 
tension



GSPH .vs. SPH

GSPH SPH

Conservation O X

Stability O X

Consistency First-ordered Zeroth-Ordered



Rayleigh-Taylor Inst.



What was wrong ?

• Lax-Richtmyer and Lax-Wendroff 
said necessary conditions.

• Convergence to a weak solution !



Weak solutions

weak sols.
real sol.

ds

dt
� 0

Entropy condition

(Olenik, 1963)



Thermal compatibility

the entropy of a fluid, S = cv ln
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Density estimation
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Shock tube test
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Specific internal energy

• The interactions 
between the two 
different fluid.

• It is called Sod test 
(Sod 1978)

• A good test problem
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SPH, GSPH & tcGSPH
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Why are the results different ?

They didn’t obey the rules. 

Can I believe my simulation ?

Yes I can.
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Future

• Nonlinear, nonisothermal stability analysis

• Total Variation Diminish (TVD)

• Non-oscillatory property

• Different parallelization (i.e. GPU)



tcGSPH is

• working.

• better.



Public code for CVs
• Convergence scheme : high resolution scheme

• Radiation HD by the diffusion approximation

• Fully 3-dimensional self-gravity code

• Parallelization with MPI2-libraries

Any participation should be welcomed.

• Magneto hydrodynamics (optional)

• Documentation : HTML, (La)TeX, UNIX man...

• Scientific visualization





Solenoidal field




