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Provide a test of few-body nuclear physics — measuring nuclear size
with lasers.
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Precision in theory and experiment

Precision in experiment but no theory - application to standards
Precision in theory but no experiment

Precision based on theoretical assumption and experimental null
measurement — powerful technique (q, = q,, m;, = m,, parity, edm)

Precision calculation and measurement — ppm, ppb, ppt — sensitive to any
deviations

A few “simple” systems that provide the tests — in electromagnetic
systems these are primarily simple atoms, i.e. hydrogen and helium like.









Introduction to Helium Spectroscopy

Measurements conducted of the large and small
fine structure splittings in the 23P level of helium-4

23P

Technique involves a metastable atomic beam
excited by a 1083nm diode laser

1083 nm
IR Diode Laser
Implement new technologies and refine 3
techniqgues for use in high precision laser 2 Sl—é.a

spectroscopy
#He+e (27eV)— He +e

'S,
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Basic Methodology

AE = h f, f AN/ _I_
AE = E,-E, = h (f,-f;) 2 WA E,
electro-optic modulator FIEAVAVANR

—.—

Multiple splittings — which method?
Stable states, systematic check
Isotope shift



Theoretical Framework

Basic He-4 Structure — Coulomb interaction and variational calculation
Effective Operators — fine structure with perturbation theory
Transition Probabilities — external time dependent field

Magnetic Field Dependencies

He-3 Hyperfine Structure

E = mc?(1+c,02+c,a+c.o’+c 0°+...)

o = fine structure constant, a =e’/hc

Big picture — Nucleus and electrons interacting through the electromagnetic field,
i.e. emission and absorption of photons described by Feynman diagrams,
demonstration?



Basic He-4 Structure

The basic structure of the helium atom can be understood by identifying the
guantum numbers that describe the system.

Spin-Spin Interaction

Helium consists of 2 electrons, which are spin-J particles. Thus, the total spin angular
momentum of the system is

S=[s;-s,],..,s;+s, with m =-§,..., +S
So, $S=0withm,=0 and S=1withm,=-1,0,+1

These are the Singlets and Triplets respectively that arise from the large electron-electron
coulomb interaction.

Spin-Orbit Interaction (Fine Structure Splitting)

For the purposes of this experiment, the total angular momentum of the system will be limited
toL=0and L =1 for the 23S and the 23P states respectively. Thus,

J=[s-L],..,S+L with m;=-J,..,+]
The total angular momentum for the 23P levels are

J=0, 1 and 2 with the corresponding m;



Transition Probabilities

Relative Signal Strength
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Magnetic Field Dependencies

The magnetic field dependence of the states is found by determining the energy
eigenvalues for a range of magnetic field values. This is used not only to predict

where the transitions are in a magnetic field, but also to extrapolate to zero field
during the data analysis.

Relative Transition Frequency vs. Magnetic Field
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He-3 Hyperfine Structure

A very valuable consistency check is possible by measuring the J
Helium-3 hyperfine structure. Although a much more complicated
system, the 23S hyperfine splitting is know to a very high precision.

=)
9 | = q

23P
Unlike He-4, the nuclear spin quantum number (/) of
He-3 is equal to 2. Adding in this angular momentum 1
introduces the hyperfine splitting.

D= N

1083 nm

23S Metastable States IR Diode Laser

F=S-1,...S+1=1-%,.,1+%
F=1/2and F=3/2

23P States 23 S1—C
F=J-1,..,J+1 3

J=0,F=1/2
1,F=1/2and F=3/2
2,F=3/2and F=5/2

N | [\

N =

j # He+e (27eV)—He +¢
Q-
1'S;
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Metastable Source

The metastable beam is generated by
bombarding the helium atoms with

electrons boiled off a hot cathode tungsten
filament.

Peak electron energy for 23S metastable
creation is ~“40 eV.

B - Field B - Field

TSI 1

1083nm Pump Laser
-e
He Source P Aoz

)




Optical Pumping

Custom Fiber Laser with
30m Laser Cavity

Fiber laser width is ~1 GHz

Pumping occurs in a large
magnetic field (~0.4 T) to
isolate transitions

O state depopulation is better
than 1000:1

A custom designed and built fiber laser is
used to pump out the 0 state metastable
atoms into the %1 states.
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Singlet Quenching

Singlets are removed from the atomic beam using a large electric field. The fall
off is exponential with respect to the electric field squared, and thus the voltage

applied to the electrodes squared.

Counts (C) can be
expressed in terms of
the voltage (V) as

—(Vﬁf
C = Coe ¢

The characteristic
voltage V.= 10.6 kV

Quenching of 10000:1 at
V="~28 kV

Counts vs Voltage”2

\ y= 18.586¢0-009x
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Interaction Laser

The interaction laser is a frequency and power stabilized 1083 nm diode laser.
An electro-optic modulator is used to create tunable sidebands to excite the

transitions.
:/g ‘@ 3m Etalon
Locking .
Electronics Microwave
Synth
IR Laser
N Power
— 7 Stabilization  FOM

To Atomic Beam

Chamber



Signal Detection

A channeltron detector is used to detect O state metastable atoms populated by
the interaction laser. The %1 states are deflect out of the atomic beam using a
Stern-Gerlach deflecting magnet.

Stern-Gerlach
Deflecting Magnet

+1 Channeltron Detector

~

Atomic Beam
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JO2 splitting vs intensity
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JO2 splitting vs step size
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JO2 splitting vs B field
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TABLE I. Uncertainty budget (kHz, 1 standard deviation).

Source J=0 to J=2 fine structure interval
Laser Power <0.1

st Order Doppler <0.1

B field <0.1

Line Shape 0.2

Other 0.1

Total (rms sum) 0.3
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Consistency Checks
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Calibration?

The hyperfine splitting in the 23S metastable state
of helium-3 is a very well know value. This serves
as a remarkable consistency check of this
experimental method.

Helium-3 23S Hyperfine Splitting

1
2

23 S—C 6739.701177(16) MHz
3
2

S. D. Rosner and F. M. Pipkin,
Phys. Rev. A 1,571 (1970)
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Improvements — tunable sideband selection

©
C
@
¢~ —d=0—m=0 2 ,
(C\I ;
29.617 GHz g
% S
3 . ko
2Py 1= = +1——— %
012 —TJ=1{ ——————— % ©
m= -1——— :
2.291 GHz '_ _____ 7<
l m]‘-+1




Improvements — tunable sideband selection




Improvements — tunable sideband selection

http://www.rp-photonics.com/encyclopedia_y.html, courtesy R. Paschotta

ns (pr*2)

60 cm Yb1200 Doped
Ytterbium Fiber

(A

500 mW FBG stabilized
975 nm Telecom laser uses
as a pump



Improvements — Transverse Laser Cooling

s range




25-2P Helium Isotope Shift

Once all mass dependent effects are
calculated, the nuclear volume effect
dominates the uncertainty.

Can use this to determine the nuclear size.
Test predictions of few-body nuclear physics

Verifies underlying non-relativistic zeroth
order approach (justification chiral
perturbation theory)
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What about Tritium Size?

Nuclear Physics very similar
Experiment Very Different

1S-2S transition isotope shift

Need a convenient tunable laser source



Convenient Laser Source

840 mW Single frequency 14 pin
butterfly pump laser at 972.34 nm

FC/APC
connector

«—15Secm——



Single Frequency Operation

__— - Laser medium

10 GHz FSR of the
internal laser diode

cavity

linewidth at FWHM

700 MHz mode space
correspond to 15 cm

distance from laser
diode to FBG.




Doubling Cavity Geometry




Doubling Cavity Geometry (Patented)
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Blue Output Power vs. IR Input Power
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Blue Conversion Efficiency
vs. IR Input Power
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TABLE I. Efficiency and Loss budget (%).

Source Efficiency Loss (100 — Eff.)
Blue Transmission & Absorption 95 5
IR Mode Coupling 96 4
Linear Efficiency & Loss 97 3
Polarization allignment 99 1
Blue induce defocussing 93 7
Blue Fiber Coupling 87 13
Total 81 19

71 29

Wall Plug Efficiency = 21.4%



Better Crystal: PPSLT vs. PPKTP

Type | Nonlinearity Indexof = Indexof ' Conversion Blue
of of d33 refraction = refraction Efficiency Absorption
Crystal (pm/V) at 972 nm = at 486 nm 1 (%) in 20 mm
crystal
PPKTP 14.9 1.83 1.90 1.35 5%

PPSLT 13.8 2.14 2.22 0.76 0.3 %
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Efficiency = 5.6 x 101%/3.0=1.9 x 10-1°




Physics and Precision

 Scientific explanations applicable to a wide
range of physical phenomena

* No less important is the ability to test some
physical systems to great precision

* Provides a remarkable test and a remarkable
confirmation of the believe that physical laws
underlie the operation of our natural world



Laser Studies of Basic Atoms and
Nuclei — an Olympics of Precision

So you wish to conquer in the Olympic games, my friend? And
| too, by the Gods, and a fine thing it would be! But first mark
the conditions and the consequences, and then set to work.
You will have to put yourself under discipline; to eat by rule,
to avoid cakes and sweetmeats; to take exercise at the
appointed hour whether you like it or no, in cold and heat; to
abstain from cold drinks and from wine at your will; in a word,
to give yourself over to the trainer as to a physician. Then in
the conflict itself you are likely enough to dislocate your wrist
or twist your ankle, to swallow a great deal of dust, or to be
severely thrashed, and, after all these things, to be defeated.

Epictetus (c. 55—c. 135), Greek stoic philosopher. Encheiridion,
no. 29b, trans. by T.W.H. Rolleston (1881).
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