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@ Three-Body Quantum Reactive Scattering
o Applications
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Three-Body Quantum Reactive Scattering

Interested in Reactions of the Form: o Non-Reactive : (1)
o Elastic
A+BC (1) o Inelastic
A+ BC = AB+C (2) @ Reactive : (2) and (3)
AC+B (3) o Collision-Induced Dissociation : (4)
A+B+C (4) or its time reversal Three-Body

Recombination

Jow SJoo &3 o
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Applications of Three-Body Collisions

@ Ultra-Cold Atomic Systems
o Three-body recombination leads to trap loss
A+B+C— (ABC) - A+ BC
o Limits maximum density in Bose-Einstein
Condensates

Figure : MOT Image (Courtesy of the Shaffer research group:

o Chemical Lasers http:/ /www.nhn.ou.edu; ~shaffer/research/ultracold.html)

F+ Hy; — H+ HF

@ Ozone Formation

@ Positronium Formation
et+H—efe” +p

o Neutron detection: 3He, °Li, 1°B
° n+3Hc—> 1H+3H
o Rewritten as n + 'H°H — 'H + 2H n
A+BC— B+ CA

Figure : Chemical Laser (Courtesy of the Office of Naval
Research: http://science.dodlive.mil/tag/lasers/)
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Coordinates

(X, Yr. Zo)

o System of 3 atoms: A, B, and C

@ 3 Atoms — 9 Coordinates Figure : Space Fixed Axes

@ Choose physically meaningful coordinate sets

o Relative Coordinates:
3 Internal + 3 Orientation + 3 Center-of-Mass

Figure : Euler Angles
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Jacobi Coordinates

Body-Fixed: S;, sr, ©7, ar, B, v+

Mass-scaled

S : Reaction Coordinate

sr : Vibrational Coordinate

©; : Rotational Coordinate

Appropriately describe A + BC scattering states

Single set does NOT treat each arrangement

channel equivalently

Not optimal for treating A + B 4+ C products:

double continuum
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APH Coordinates

APH = Adiabatically Adjusting, Principal Axes Hyperspherical (Coordmates

Body Fixed: p, 0, xi, aq, Bg, V@
p: Size of three-body system

6: “Bending” angle: Collinear to equilateral triangle 0o @ @
xi: Kinematic angle: < 5 0as xr —0

s,

Treats all arrangement channels equivalently

Single continuum: Appropriate for A + B + C

Covers configuration space twice BTy
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H3 Potential and Surface Functions
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F+H, Potential (Hyperspherical at constant p)

H+HF
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F+H, Potential (Collinear)

F + H, Collinear Plane
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Geometric Phase

o Electronic potential energy surfaces (PESs) can cross to form conical intersections

o Berry (1984), Mead and Truhlar (1979) showed that, when a real electronic wavefunction
moves on a closed loop which encircles the conical intersections, it needs to change sign.

@ This change of sign effect is referred as the geometric phase effect

@ This double-valuedness of the electronic wavefunction can have a non-trivial effect to the
reactive scattering process

@ Molecular AharonovBohm effect

PES 2

Conical
Vix.y)

X Intersection
X
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Spin-Aligned TriatomicLlithium

@ Xuan Li derived the equations necessary to treat conical intersection that occur at collinear
geometries

o Even at ultracold temperatures, the wavefunction is able to completely move around the
conical intersections

@ Non-trivial Geometric Phase effect
o Locations of conical intersections are not in a straight line in the internal coordinates

o Difficulties in using body-fixed internal coordinates
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1D Scattering: Time-Independent

. \
@ Quantum mechanical treatment
E;
o Single energy e
g gy REFLECTED Vo
- TRANSMITTED
@ Two arrangement channels INCIDENT E» —

@ Only translation: kinetic energy \/\/\/\

Simple boundary conditions

Wave functions must be
well-defined over all space.
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1D Scattering: Time-Dependent

semergy

1D Scattering

@ Gaussian Envelope

o Initial-Value Problem fte! |

@ Range of energies _)'{\___
o Two arrangement channels e’

@ Match to Tl boundary conditions

only asymptotically !

Vv
151

REFLECTED TRANSMITTED
- _— | —
INCIDENT m

e

Figure : Wave Packet Evolution (Courtesy of LabSpace:
http://labspace.open.ac.uk/mod /resource/view.php?id=347269 )
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3D Scattering

@ Three arrangement channels

@ Energy stored in added degrees of freedom:

o electronic
e vibration
e rotation

@ Translational coordinate boundary conditions same

as 1D case

e Vibrational-rotational boundary conditions: Match

to basis functions

Gregory A. Parker (Univ. of Oklahoma)
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Time-Independent Methods

@ Solve Time-Independent Schrédinger equation oo e

(0,0 to (0.2
o Calculates entire scattering matrix at a single energy: {0, 0l ta 0, 3}

All initial states — All final states >
Foss
o Accurate, efficient results K
. & 010 H+H2 J=0
o low energies
o systems that support fewer bound states: Hs, Liz, HNe; 008

o Limited to time-independent Hamiltonians

Figure : APH Surface Function: v =0, =0

Li=2
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Time-Dependent Methods

@ Solve Time-Dependent Schrédinger equation (TDSE): Initial-Value Problem

.0
in = ™ (e) = H o MP(0) &)

o Calculates a column of the scattering matrix for a range of energies:
A single initial state — All final states

@ More favorable computational scaling
@ Initial-state does NOT have to be an eigenstate of the system
o Easier to locate energy-dependent scattering resonances

@ Intuitive picture of scattering dynamics
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Hyperspherical Time-Dependent Wave Packet Method

@ Construct the initial wave packet for state-to-state scattering

e Use Jacobi coordinates for A + BC reactants
o Place in asymptotic region of potential energy surface at t = 0

@ Construct the initial wave packet for processes like photoassociation, photodissociation and
coherent control

e The initial wave packet is determined by the physical process and is often inside the interaction
region at t = 0

© Propagate the wave packet in time

o Time evolution operator expressed in APH coordinates
o Sample wave packet at a constant p = po after each time step

©Q Analyze wave packet

e Project sampled wave packet onto APH surface functions
o Fourier transform overlaps: Time — Energy
o Match to appropriate boundary conditions: S-matrix
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The Initial Wave Packet

To get state-to-state S-matrix elements, construct an initial wave packet for A + BC:

IMp oy 1 M s B
Sariu;j,-é,-(t = 0) = S g‘r;(ST,‘) XT,‘V;J',‘(ST,') @Tij/‘el'(sTI'7 57';)' (2)
Three terms of interest:
o g-,(5+) : Gaussian for reaction coordinate S,
@ X, (sr) : Diatomic ro-vibrational eigenfunction for s,

o WM

T’_jiel_(&ri,gﬂ.) : Rotational eigenfunctions for ©+;, ar;, B+, and 7,

& 20+1\"? ,
@J@”(@T,ST):( ) Y it 09)
J 2J+1 o

X 75j(l(eﬂ') DéM(aTvﬁT7’YT)7 (3)
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The Initial Wave Packet Il

B+ CA. . C+AB
Place initial wave packet in asymptotic region N N P
@ Mapped to APH grid v

5/2 A Jow
0™ (p,0,xi,t = 0) = pT /dQ D oM (t = 0)
(4)

@ Momentum directed toward interaction region
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Evolution of the Wave Packet

For time-independent Hamiltonian, propagate with time evolution operator:

gOJMp(t) _ e—i’HAt/h gDJMp(t — 0) (5)
Use Chebychev method:
N¢
efl'HAt/h(pJMp(t =0)~ ! (Emax—Emin) At /21 2(2 — (sno)i”J,,(R)Tn(—iﬂ)wJMp(t =0) (6)
n=0
where
7_—[ _ Emax + Emin —2H (7)
Emax — Emin
1
R= ?h(Emax - Emin)At7 (8)
The terms in the sum are calculated using the Chebychev recursion relation
O, = —2ifld,_1 — Dy, (9)

where &, = T,(H)pMP(t = 0).
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Evolution of the Wave Packet Il

@ As time increases, the wave packet
translates into interaction region

o Reflected or transmitted to asypmtotic \
region \

Al
o Sample at po after each time step .
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Evolution of the Wave Packet Il

TDWP
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movie3.swf
Media File (application/x-shockwave-flash)


-
Analysis of the Wave Packet

@ The wave packet can be expressed in terms of it's stationary state components at poo:

oo . .
¢! (psc, 0, X, t) dE e E/M p,(E) WINP () (10)

~ 27 Jo

o The energy eigenfunctions can be expanded as:

\UJAiP(Poo) — Z S#,i(E) \IJ-;/\"P(E; Poo) (11)
f

@ Project both sides of Eq. (10) onto the APH surface functions:
L[~ iEt/h J J
Fini(tipe) = 5o [~ AE TS0 (E) ST Ml (Eip) SLAE)  (12)
f

o Fourier Transform Eq. (12) to extract S matrix elements from the integral
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Analysis of the Wave Packet Il

o After the Fourier transform:

> Alnf(Ei poo) S7(E) = Flp /(Ei poo) (13)
f

e The F’_{A :(E; poo) are the Fourier transformed overlaps of the sampled wave packet with the
APH surface functions:

1 ©° .
FiriEipoe) = o [ dee™ /M EL (85 ) (14)
ni(E) Jo

@ The S matrix elements are obtained by solving the matrix equation:

A's! =F/ (15)
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Computation

To increase computational efficiency:

o Take advantage of symmetry of the potential energy surface

@ Optimize most time-consuming portion of the program: Sylvester-like algorithm
vee (Yy[ 1,1])
vee (Yy[5,2,:])

(f, ® fg ® hy)vec(W;) = = vec(Yy) (16)

vec (YX-[:, np,:])
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Symmetry: H + H»

H+H2 (RHO=6.0)

P B L B

o Covers configuration space twice
@ One unique arrangement: H + Hy

@ Six reflection planes

@ Three rotational symmetries ' X

Four 1D and two 2D irreducible
representations

@ Represent wave function on 1/12
or 1/6 of total space
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Symmetry: H + H»

Express initial wave packet as a linear combination of irreducible representation wave packets.

Consider a v = 0, j = 0 initial state:
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Symmetry: F 4+ Hp

@ Two unique arrangements: F + Hy and H 4+ HF
e (C, Symmetry

@ Two reflection planes

o One rotational symmetry

o Represent wave function on 1/4 of the total space

o Four 1D irreducible representations
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Symmetry: Implementation

o Propagate irreducible representation components of the initial wave packet:

JApF

JA
Privijil; (0,xi,t =0; pc) = P /p/]l ’(‘9 Xi»t = 0; poo) (17)

@ Expand in terms of energy eigenfunctions labeled by irreducible representation:
JApT 0vit) = 1 [T dE e /A (E) yINT 18
90, (p007 7XHt)_ e 771( ) ( )
27th Jo

@ Project onto surface functions belonging to the appropriate irreducible representation and

Fourier transform:
Jr Jr Jr
D Al o (Ei poo) il i(E) = Fj i (Es poc) (19)
f/
o Arrangement channel dependent S matrix elements are obtained

SE(E) =) PSP (E) (20)
r

Pl = (WP | W) (21)
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Sylvester-Like Algorithm

o Matrix-Vector Multiplication:
Cx = (B ® A)vec(X) (22)

o Sylvester Algorithm:
(B ® A)vec(X) = vec(AXBT) (23)

o Can express the application of the APH Hamiltonian as a sum of Kronecker products:

o1 92 B4 9 o h? 02
55 — - —sin20 — - —— +V (24)
2up? sin®0 Ox2  2up? sin20 99 00  2u 0p?

Hepe = (F, @ fg @ hy +F, @ hy @ Iy +h, @ lg ® Iy, + V)vec(W;) (25)

@ To reduce number of multiplications, each kinetic energy term can be expressed in a more
efficient form:

Hy: = vec(Yy) + vec(Yg) + vec(Y,) + Vvec(Wy) (26)
YX[:».jvk] = fPUvj]fQ[kvk]thf[:7j7 k] (27)
Yol:.jo:] = folirjJWel:J. Ihg (28)
Yol k= Wi, kh ] (29)
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Sylvester-Like Algorithm Il

Ng = 65, N, = 481 N, =150, Ny = 65
N N
(=] i i T T ; [=]
g 12 80'9
2 09 2
(ol O 06
E =
g os )
E E 0.3
= 03 [
- -
=) =)
= s

Kronecker
............ Sylvester—like

MULTIPLICATIONS (x10'%)

NTHETA

Number of multiplications required to apply the Hamiltonian to the wave packet.
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Results: H + H»

o 20fF < 5.0 S & ' ]
A 20 vi = % A A vi =1:
— — X b S 1 ie—
X 15 x 4.0 : O ji=0
a r 30 jr=1
510 | _2
E E 2.0r Ji=
o 0.5F o O j1=3
[¢) o 10r It
x x |
2 00 s s ‘ 2 00 ‘ ‘
0.5 1.0 15 2.0 25 1.0 15 20 25
TOTAL ENERGY, eV TOTAL ENERGY, eV
B ' ' ' 7 — 4.0F ]
‘\I‘ — 9 = 1
otvi=0 /i : 14
S 8ot j v/\\ S o ji=4
% $ % 3.0p
i 6.0- / ) i j©=95
= 40 B g 3200 O ji=6
3 8% / & A
< f 4 < .
2 20 / o 10r 0 ji=7
x : 8
2 00 S & 0.0 ot iy ‘
0.5 1.0 15 2.0 25 1.0 15 20 25
TOTAL ENERGY, eV TOTAL ENERGY, eV
State-to-state reaction probabilities for H + Ha(v; = j; = 0) — Ha(vr, jr) + H on the DMBE
potential energy surface.
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Results: F + H»

T 50f 7 vi=0 - g4.0 . vi=1 " »
< 400 f % 30 0 =0
r 30 r ji=1
5 5 20 2
m 2.0p o ji=
é Lol % 1.0 o ji=3
[hd g i
8 0.0e£. ‘ ‘ ‘ ‘ 0.08¢.. ‘ ‘ Py

17 18 19 20 21 22 23 17 18 19 20 21 22 23

TOTAL ENERGY, eV TOTAL ENERGY, &V

‘TA §
% 1.2¢ % 4.0 0 ji=4
Eo.gf Es.of i=5
2 06 2 20 0 ji=6
< <
2 03 2 100 | =7
E oom E gond .

17 18 19 20 21 22 23 17 18 19 20 21 22 23
TOTAL ENERGY, eV TOTAL ENERGY, eV

State-to-state reaction probabilities for F + Ha(v; = j; = 0) — HF(vr, jr) + H on the SW
potential energy surface.
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Conclusion

@ Derived new hyperspherical, time-dependent method to extract three-body scattering
information

@ Derived Sylvester-like method to increase computational efficiency

@ Obtained excellent agreement with Tl benchmark results

Reviewer Quote:

“Although hyperspherical wave packet calculations have been presented before, the present
paper is leagues ahead in terms of the detail and clarity of the theory and the accuracy of
the results.”

02 04 06 08
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Future Work

Future Work:

Implementation of non-uniform grids

Time-Dependent Hamiltonians

Inclusion of multiple electronic states

Inclusion of Conical Intersections with vector potentials
Inclusion of Conical Intersections with multiple electronic states
Inclusion of magnetic, electric and electromagnetic fields
Intense laser fields and the Floquet method

Implement sensitivity analysis

Surface Function for H3
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END

QUESTIONS?

The University of Oklahoma
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Hamiltonians

(1 0 1 92 c? 2
=—— |55+ 555  + Is (30)
2u \ S- 082 sy 0s2 2uS2  2us?
R F
2upd/2 9p? 8up?
2 4 9 . 0 1 6
- —— —sin20 — + —— —
2up? | sin20 00 00 sin?0 0x?

1 . )
+— [.Ang + By J2 +CoJ2 — ,hDQJy—} , (31)
pp oxi
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Jacobi Basis Expansion

1 GJi

IMi __
v - S Tvjl
-

- (S7) Xruslsr) Z (7, 50). (32)
Tvje o7

. 204+1\/2 )
M (5., 5,) :( ) > cled; 0Q)
J 2J+1 3

x Pia(©r) DEpi(ar, Br,vr), (33)
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Boundary Conditions

1 1/2
TVJZ (57—) S.,-~>oo} (271’}7,2[(7-,,}')

g {STT"(SVW(SJJ,‘S% e i(krujSr—tn/2)

- S—zj—wé Tivijil; (E) e i(krj _EW/2)}7 (34)
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APH Basis Expansion

4 .
LSS 7 WA (p) ®75 (0, xi: pe) Diny(eq. Ba:v0), (35)
KA

2 4 9 . 0 1 6 1542

— 5| =5 7,820 — + — ol 5

2,u,p€ sin 20 96 960 sin“ 0 Ox 8pr5

n % {Mh2j(_}+ 1)+ (CG _ M) h2/\2:|
pp 2 2

+ V(G,Xf:ﬂg)E,i’/’\}q’i';\(@,xl‘;ﬂg) =0, (36)
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Initial Wave Packet

1
JM _ _ .
(’O‘Ffl’fj,-ﬁ,-(t =0) _Sr,- s, &7 (S7;) Xrvyji(s7;)
2041\
CGtJ;, Q0Q
“(3r51) X cuesnom
X 75]',-9,-(67—,-) DsziM(OéTiaﬁTiv'YT,-)- (37)
1 /4 50\ /402 .
gr(5r) = ( ) o (57750) /477 mitoss,. (38)
212
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Propagation

He'™(p,0,xi, t) (39)

4 0 0 1 0
—_ sin 29* + N :| }QOJAP(pygth t)

2p 9p? * 8up?  2up?

n? 9%  15h? h?
sin 20 00 09  sin?0 8x,?

1 B B
+ {V(p,(?,x;) toe [Ae 5020+ 1) + (Co - M)/\2} }@J""(p,e,x;, t)

2 2
1< <D ,49
_72 AM
14 N =0

_/ ’
DA6M> NP6, xi ), (40)

8
(J2 JZ) — iiDgJy B
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