TAMUC CSCI502 Statistics for Scientific Computing and Analysis *Placement/Deficiency Exam Sample Questions This is just a courtesy sample shared for guiding you about the deficiency exam; and it is very limited, the actual exam contents, question types might vary.*

JF 8					
Question: What is the [9, 4, 5, 10, 4, 2, 9	<u>cle only one letter</u> for th mean (approximately), the m ,11,9,5,7,3,4,6,5,6, b. 6.35,6,9	edian, and the mode 9]	of the following sequ		
	ter Science Department, three nt can receive at most one awa b. 75!/(75-3)!	rd, how many poss	ible selections are ther	e?	graduate
130 females are unemp M: a man is chosen, E: the one chosen is en One person is randoml i.e. $P(M E)=?$	y selected and given that the o	ils is to be selected a	at random. We define t	he following events: bability that the chosen perso	
Call the estimate <i>a</i> . The formula $f(x) = \{ \begin{array}{c} \frac{5}{8}a, & \frac{2}{5}a \le 0 \\ 0, & else \\ \end{array} \}$ What is the probability of the p	-XYZ Department puts pro The Department has determine $x \le 2a$, where. Solution that the winning bid is b. $1/4$	ined that the dens	ity function of the w	inning (i.e. low) bid is v estimate <i>a</i> ?	iould be.
-	are random variables with om variable $Z = 3X - 2Y + b$. 18	5.	=2 and var(Y)=3 and d. 30		, find the

Question: Suppose that we are measuring the glucose intake in 114 regions of the brain using a PET image before and after taking a tests drug *testodamine*. We would like to measure whether there is significant *increase* in the glucose intake overall in these brain regions. What kind of a statistical significance test, among the following, makes sense?

a. two-sided, unpaired t-testb. one-sided, unpaired t-testc. two-sided, paired t-testd. one-sided, paired t-teste. it does not make a difference, all would yield the same result

Other Questions. Show your steps. Write legibly.

Question: Let *X* be a random variable with expected value $E(X) = \mu$. Prove that, its variance, σ^2 , is equal to $E(X^2) - \mu^2$.

Question: In the NBA (National Basketball Association), in Texas the Mavs-Spurs rivalry is well-known. Based on the history of records of the two teams against each other, the probability of Spurs winning was 62% before the 2013-2014 play-off series. (In basketball, there are two outcomes of a game, either win or lose, there is no tie). When the two teams face each other in a playoff series, the first team to have 4 wins over the other one would win the series.

- a) What is the minimum and maximum number of games that these two teams can play in the series?
- b) Given the Spurs' probability of winning vs Mavs above, what is the probability that the Spurs will win the series in 4 games?
- c) Given the Spurs' probability of winning vs Mavs above, what is the probability that the Spurs will win the series in 5 games?
- d) Given the Spurs' probability of winning vs Mavs above, what is the probability that the Spurs will win the series in 6 games?
- e) Given the Spurs' probability of winning vs Mavs above, what is the probability that the Spurs will win the series in 7 games?

Question: A company which manufactures light bulbs which have a lifetime (before a burnout) that is normally distributed with mean equal to 800 hours and a standard deviation of 40 hours. Using the attached "Area Under Normal Curve" table provided in the last page, calculate:

- a) Find the probability that a bulb manufacutred by this company burns more than 868 hours.
- b) Find the probability that a bulb manufacutred by this company burns less than 732 hours.

A	
(z

_

Table A.3 A	reas under	the Nor	rmal Curve
-------------	------------	---------	------------

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0001 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0012 0.0021 0.0023 0.0223 0.0021 <th>-3.4</th> <th>0.0003</th> <th>0.0003</th> <th>0.0003</th> <th>0.0003</th> <th>0.0003</th> <th>0.0003</th> <th>0.0003</th> <th>0.0003</th> <th>0.0003</th> <th>0.0002</th>	-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.1 0.0010 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0008 0.0007 0.0011 -2.0 0.0013 0.0013 0.0012 0.0011 0.0012 0.0022 0.0021 0.0020 0.0021 0.0020 0.0021 0.0020 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0031		0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.0 0.0013 0.0013 0.0012 0.0011 0.0012 0.0021 0.0021 0.0021 0.0021 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0035 0.0034 0.0033 0.0035 0.0035 0.0031 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0066 0.0064 0.0064 0.0064 0.0064 0.0064 0.0143 <th>-3.2</th> <th>0.0007</th> <th>0.0007</th> <th>0.0006</th> <th>0.0006</th> <th>0.0006</th> <th>0.0006</th> <th>0.0006</th> <th>0.0005</th> <th>0.0005</th> <th>0.0005</th>	-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 -2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0021 0.0021 0.0021 0.0020 0.0019 -2.7 0.0035 0.0044 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 -2.6 0.0047 0.0045 0.0044 0.0037 0.0055 0.0054 0.0052 0.0051 0.0049 0.0049 -2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0044 -2.3 0.0170 0.0174 0.0172 0.0122 0.0121 0.0119 0.0116 0.0113 0.0110 -2.1 0.0179 0.0174 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 -2.0 0.0228 0.0221 0.0217 0.0212 <th></th>											
-2.8 0.0026 0.0025 0.0024 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 -2.7 0.0035 0.0044 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 -2.6 0.0047 0.0046 0.0044 0.0043 0.0014 0.0039 0.0038 0.0037 0.0036 -2.4 0.0082 0.0080 0.0075 0.0073 0.0071 0.0069 0.0088 0.0066 0.0044 -2.3 0.0107 0.0104 0.0122 0.0129 0.0122 0.0171 0.0069 0.0088 0.0086 0.0066 -2.1 0.0179 0.0144 0.0170 0.0166 0.0162 0.0188 0.0154 0.0150 0.0148 0.0143 -2.0 0.0228 0.0227 0.0217 0.0207 0.0202 0.0177 0.0188 0.0183 -1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0250 0.0244 <th>-3.0</th> <th>0.0013</th> <th>0.0013</th> <th>0.0013</th> <th>0.0012</th> <th>0.0012</th> <th>0.0011</th> <th>0.0011</th> <th>0.0011</th> <th>0.0010</th> <th>0.0010</th>	-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 -2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0049 0.0049 -2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0088 0.0064 -2.3 0.0107 0.0146 0.0122 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 -2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0150 0.0146 0.0143 -2.0 0.0228 0.0221 0.0217 0.0212 0.0202 0.0197 0.0192 0.0148 0.0143 -1.9 0.0287 0.0281 0.0274 0.0288 0.0220 0.0314 0.0307 0.0301 0.0294 -1.7 0.0446 0.0427 0.0418 0.0409 0.0401 0.0392 <th></th> <th>0.0026</th> <th>0.0025</th> <th>0.0024</th> <th>0.0023</th> <th>0.0023</th> <th>0.0022</th> <th>0.0021</th> <th>0.0021</th> <th>0.0020</th> <th>0.0019</th>		0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 -2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.3 0.0107 0.0104 0.0122 0.0029 0.0026 0.0094 0.0091 0.0089 0.0087 0.0084 -2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0110 0.0116 0.0113 0.0110 -2.1 0.0179 0.0174 0.0170 0.0166 0.0122 0.0207 0.0202 0.0197 0.0192 0.0188 0.0143 -1.9 0.0287 0.0281 0.0274 0.0268 0.0220 0.0314 0.0307 0.0301 0.0294 -1.7 0.0446 0.0447 0.0218 0.0409 0.0425 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0		0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.3 0.0107 0.0144 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 -2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 -2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0122 0.0197 0.0192 0.0146 0.0143 -1.9 0.0287 0.0281 0.0274 0.0268 0.0222 0.0314 0.0307 0.0244 0.0239 0.0233 -1.8 0.0359 0.0351 0.0344 0.0360 0.0410 0.0302 0.0384 0.0307 0.02037 0.0301 0.0239 0.0233 -1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 -1.4 <th></th>											
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 -2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 -2.1 0.0179 0.0174 0.0170 0.0166 0.0122 0.0197 0.0192 0.0188 0.0143 -2.0 0.0228 0.0221 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0133 -1.8 0.0359 0.0351 0.0344 0.0366 0.0222 0.0314 0.0307 0.02039 0.0233 -1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 -1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 -1.3 0.0968 0.0951 0.0934 0.0918 <th>-2.5</th> <th>0.0062</th> <th>0.0060</th> <th>0.0059</th> <th>0.0057</th> <th>0.0055</th> <th>0.0054</th> <th>0.0052</th> <th>0.0051</th> <th>0.0049</th> <th>0.0048</th>	-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
−2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 −2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 −2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 −1.9 0.0287 0.0281 0.0274 0.0268 0.0222 0.0314 0.0307 0.0301 0.0294 −1.7 0.0446 0.0437 0.0418 0.0409 0.0401 0.0392 0.0384 0.0307 0.0301 0.0294 −1.6 0.0548 0.0557 0.0616 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 −1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 −1.3 0.0968 0.0951 0.0934 0.0918 <th></th> <th>0.0082</th> <th></th> <th>0.0078</th> <th>0.0075</th> <th>0.0073</th> <th>0.0071</th> <th>0.0069</th> <th>0.0068</th> <th>0.0066</th> <th></th>		0.0082		0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	
−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 −2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 −1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 −1.8 0.0359 0.0351 0.0344 0.0366 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 −1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 −1.6 0.0548 0.0537 0.0566 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 −1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0708 0.0694 0.0698 −1.3 0.0968 0.0951 0.0934 0.09175 </th <th>-2.3</th> <th>0.0107</th> <th>0.0104</th> <th>0.0102</th> <th>0.0099</th> <th>0.0096</th> <th>0.0094</th> <th>0.0091</th> <th>0.0089</th> <th>0.0087</th> <th>0.0084</th>	-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0192 0.0188 0.0183 -1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 -1.8 0.0359 0.0351 0.0344 0.0366 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 -1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 -1.6 0.0548 0.0557 0.0526 0.0616 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 -1.5 0.0668 0.0655 0.0643 0.0600 0.0594 0.0582 0.0571 0.0559 -1.4 0.0808 0.0793 0.0778 0.0764 0.0799 0.0735 0.0708 0.0694 0.0681 -1.3 0.1151 0.1131 0.1112 0.1903 <th></th>											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197		0.0188	0.0183
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1.9	0.0287							0.0244		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0808		0.0778			0.0735		0.0708		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.1841					0.1711	0.1685	0.1660	0.1635	0.1611
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 -0.4 0.3446 0.3409 0.3372 0.336 0.3000 0.3264 0.3228 0.3192 0.3156 0.3121 -0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 -0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 -0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247		0.3821									
- 0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641											
	-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Table A.3 (continued) Areas under the Normal Curve

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998