Experimental challenges in nuclear astrophysics Answering to ancient questions

Rosario Gianluca Pizzone

Nature triggers men's admirations; and we look at everything and wonder, but seldom we investigate the causes; thus we ignore the Movements of the Sun and stars As well as the explanations of many other phenomena

INFN

LNS

Cicero, I century BC

Observation and understanding of the stars started together with mankind (Denderah Zodiac)

Spiral Galaxy NGC 4622

And much progress was made in the last centuries through astronomical studies

But... it was realized that it was not enough.

In order to understand astrophysical processes, we need to know what's going on there

Astrophysics: studying the Universe through the laws of physics

Nuclear Astrophysics: study of nuclear processes which take place in the Universe Understanding MACROCOSMOS through MICROCOSMOS

WHY?

• to understand how stars produce the energy they emit;

to understand how chemical elements were produced

 $\boldsymbol{\cdot}$ to understand the first seconds of the Universe and help to track how it will end

Why gold costs much more than iron??

Stars emit energy thoughout their lives and stars also change (evolve) during their lives. are these aspects connected?How?

Massive Star

The birth of a start: Galactic gas and powder

Star (Sun)

We know from geology Earth is 4.65 x10⁹ years old. What source can guarantee solar luminosity for such a long time?

Gravitational contraction?

It can be shown Sun can hold From GC for 10⁷ year (Kelvin Helmoltz timescale)

Nuclear fusion? Simple estimates show it's the right answer. But HOW?

First ideas suggested 4 H nuclei can merge into a He Producing energy from mass defect (Eddington)

Where are the 92 natural elements coming from? How were they produced?

Earth: Fe, Si, O, Mg

A "cosmic abundance"?

The elemental abundance in the universe is determined in the Solar neighborhood and is assumed to be Universal. It is measured in Earth, Sun, Meteorites, Stars ... by different methods.

Several features are visible in the curve of abundance.

Elemental Abundance in the Universe

Elemental abundance in the Universe

Features:

- · Li, Be, B under-abundant
- peak around A=56 (Fe)
- almost flat distribution beyond Fe
 exponential decrease up to iron peak

Eddington 1920, Bethe 1938, von Weiszäcker 1938, Gamow 1948, Cameron 1957 …

In **1957**, B²FH presented the basis of the modern nuclear astrophysics in their review paper explaining *by nuclear reactions occurring in the interior of the stars* :

 \rightarrow The production of energy

 \rightarrow The creation of elements

REVIEWS OF

MODERN PHYSICS

Volume 29, Number 4

October, 1957

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

The first complete review of nuclear reactions explaining: H and He quiescent and hot burning, and of the nucleosynthesis beyond Fe.

Margaret Burbidge

Geoff Burbidge

William Fowler

Fred Hoyle

 In the astrophysical environments the energy required for particle interactions is taken from Thermal Energy

- In the Sun T=1.5 \times 10⁷ K then E=kT~ keV
- In large masses stars T~ 10⁹ E~ 0.5-1 MeV

cross sections measurements: Reactions between charged particles

The main problem in the charged particle cross section measurements at astrophysical energies is the presence of the Coulomb barrier between the interacting nuclei

 μ in amu and E_{cm} in keV

The probablility for penetrating the Coulomb barrier goes down rapidly with decreasing energy, but at a given temperature the possibility of having a particle of high energy (and therefore high velocity) decreases rapidly with increasing energy (the red curve).

The sum of these opposing effects produces an energy window for the nuclear reaction: only if the particles have energies approximately in this window can the reaction take place.

Experimental procedure Often cross sections are too low to be measured

Bare Nucleus Astrophysical S(E)-factor is introduced for a easier extrapolation.

The DANGER OF EXTRAPOLATION ...

large uncertainties in the extrapolation!

<u>Necessary is Maximize the signal-to-noise ratio</u>

<u>SOLUTIONS</u>

- IMPROVEMENTS TO INCREASE

NUMBER OF DETECTED PARTICLES

4 π detectors

New accelerator at high beam intensity

- IMPROVEMENTS TO REDUCE

THE BACKGROUND

Use of laboratory with natural shield - (underground physics)

Use of magnetic apparatus (Recoil Mass Separator)

Luna underground facility INFN LNGS

TECSA array

TAMU C.S. & INFN LNS

Hard Work is necessary

To try to go inside the problem

To understand what we see

The electron screening effect must be taken into account at such low energies

(Assenbaum, Langanke, Rolfs: Z.Phys. 327(1987)461)

In the accurate measurements for the determination of nuclear cross-sections at the Gamow energy, in laboratory, enhancement f_{lab}(E) -factor in the astrophysical $S_b(E)$ -factor has been found

However

Electron Screening

At astrophysical energies the presence of electron clouds must be taken into account in laboratory experiments.

 $U_e = \frac{Z_1 Z_2 e^2}{R_a}$

The atomic electron cloud surrounding the nucleus acts as a screening potential U_e

(Assenbaum H.J. et al.: 1987, Z. Phys., A327, 461)

Since direct measurement are extremely time consuming and difficult (at astrophysical energies) or sometimes beyond present possibilities

Independent measurements of cross sections and electron

screening potential U_e are needed !!!

We need to be CLEVER: NEW IDEAS ARE NECESSARY

-to measure cross sections at never reached energies

-to retrieve information on electron screening effect when ultra-low energy measurements are available.

INDIRECT METHODS ARE NEEDED

Indirect Methods in Nuclear Astrophysics (both stable and instable beams)

Coulomb Dissociation
ANC & transfer reactions
Trojan Horse Method
Break-up of loosely bound nuclei
β-decay, resonant elastic scattering ...

Trojan Horse Method

Quasi-Free mechanism

Basic idea:

-The Anucleus present a strong cluster structure: A $\mp X \oplus S$ clusters astrophysically $\mp He$ relevant two--The x cluster (participant) interacts with the nucleus B B + x $\rightarrow C$ + D

from quasi- free contribution of an appropriate three-body -The Segleriter acts as a spectator

(it doesn't take part to the reaction) and retains the same momentum is had in the entrance channel

We can extract astrophysically relevant

two-body cross section σ

 $B + x \rightarrow C + D$

from quasi- free contribution of an appropriate three-body reaction

 $A + B \rightarrow C + D + S$

Coulomb Barrier Suppression

Once Coulomb barrier is overcome by TH nucleus the astrophysical reaction can take place without any evident suppression Nuclear astrophysics experiments are fun because you never know what you're going to have as a result...

And like gambling You hardly have money to cover your expenses

But sometimes you win.. And you get results virtual decay of nucleus A->x+S First vertex

Advantages: Simple & cheap Experimental setup

THM: study of the ⁷Li(p, α)⁴He reaction from the 3-body one: ²H(⁷Li, $\alpha\alpha$)n TH nucleus deuteron, E_{beam}= 21 MeV @ LNS Catania

CD2 Target

Beam energy much higher than Barrier

Angles were selected in such a way that the yeld from (the probable) quasi-free mechanism is maximum

Beams and Targets cheap. Detectors set-up trivial

Good ideas make research possible in tough times!!

Results

• If one assumes that THM gives the bare nucleus S factor (according to its properties) then by comparing it with direct data one can get the electron screening potential

Engstler S. et al.: 1992, Z. Phys., A342, 471

• C. Spitaleri et al.: 2001, Phys. Rev. C. 63, 055801

•No screening effect at E<100 keV for indirect data; •Direct and indirect methods are complementary; •Independent determination of $S_b(E)$ and U_e ; •Previous extrapolations of S_b are confirmed.

Reaction Rate

$$\langle \sigma v \rangle_{12} = \left(\frac{8}{\pi \mu_{12}}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_{0}^{\infty} \sigma(E) \exp\left(-\frac{E}{kT}\right) E dE$$

Reaction rate obtained for the 7Li(p,a)4He from THM measure compared with other compilations

Coll. R.G.P, R. Spartà & C.B.

Lithium is important for:

- Probing stellar interiors and structure (need of abundances measurements, stellar modeling, Astroseismology)
- Probing Primordial nucleosynthesis and early universe
- Fusion reactors and electron screening application

Lithium surface abundance for the Sun, Good agreement with NACRE results

RPG et al., A&A 2003

Lithium Destruction in disk stars: astrophysical Uncertainties vs. nuclear inputs

Solid lines: THM uncertainties for nuclear rates Dashed lines: Astrophysical uncertainties (mass=0.9-1 M₀, He abundance =0.24-0.27, convection efficiency)

The Collaboration

C.Spitaleri, S. Cherubini, G Guardo, I. Indelicato, M.La Cognata,L.Lamia, R.G.Pizzone, S.M.R. Puglia, G.G. Rapisarda, S.Romano, M.L.Sergi, R. Spartà, A.Tumino

I N F N, Laboratori Nazionali del Sud, & Università di Catania, Italy

C. Bertulani Tamu Commerce USA A.M. Mukhamezhanov, R. Tribble,Tamu C.S. USA V. Kroha Rez, Praha, Czech Rep. 🖕

- G. Rogachev, FSU, USA
- S. Kubono, RIKEN JAPAN

		Further reading
BOOKS	W.D. Arnett & J.W. Truran	<i>Nucleosynthesis</i> The University of Chicago Press, 1968
	E. Böhm-Vitense	<i>Introduction to Stellar Astrophysics, vol. 3</i> Cambridge University Press, 1992
	D.D. Clayton	<i>Principles of stellar evolution and nucleosynthesis</i> The University of Chicago Press, 1983
	C. Bertulani	Nuclear Physics in a Nutshell Princeton Univ. Press
	C.E. Rolfs and W.S. Rodney C. Iliadis	<i>Cauldrons in the Cosmos</i> The University of Chicago Press, 1988 Nuclear Physics of Stars - Wiley

REVIEW PAPERS

Not an exhaustive list!!

R. Boyd: C. Rolfs: Thielemann et al.: *Spitaleri et al:* Nucl. Phys. A693 (2001) 249-257 Progr. Part. Nucl. Phys. 46 (2001) 23 Part. Nucl. Phys. 46 (2001) 5-22 Phys. Rev. C (2001) 055801 Big Bang Nucleosynthesis Nuclear reactions in stars Element synthesis in stars Trojan Horse Method

The main difficulties for experimental measurement of this cross section derive from:

•²⁶Al is an unstable isotope. Moreover also cross sections of reactions induced by metastable state should be known with good precision

•Necessity of a n beam at astrophysical energies

Necessity of a THM measurement

Quasi-free break-up of deuteron <u>Beam Energy around 60 MeV</u> Coincidence detection of p and ²⁶Mg.

This will allow to measure the excitation function of the reaction of interest In the astrophysical energy range (0-1 MeV)

Once the 3-particle in exit channel reaction cross section is measured, one can Extract the binary cross section at astrophysical energies according to the prescriptions of th THM

However

The electron screening effect must be taken into account (Assenbaum, Langanke, Rolfs: Z.Phys. 327(1987)461)

In the accurate measurements for the determination of nuclear cross-sections at the Gamow energy, in laboratory, enhancement $f_{lab}(E)$ -factor in the astrophysical $S_b(E)$ -factor has been found

U_e=340±50 eV U_{ad}=186 eV S₀=16.9 MeV b Engstler S. et al.: 1992, Z. Phys., A342, 471

C. Spitaleri et al.: 2001, Phys. Rev. C. 63, 055801

S. Cherubini et al.: 1996 Ap. J., 457, 855

•No screening effect at E<100 keV for indirect data; •Direct and indirect methods are complementary; •Independent determination of $S_b(E)$ and U_e ; •Previous extrapolations of S_b are confirmed. Data Analysis Phases:

- Find the 3-body reaction of interest among the ones occurring in the target.
- Separate the quasi-free mechanism from all the others
- Measure the binary reaction cross section from the three body one
- Normalization and comparison to direct data: validity test and measurement of astrophysical interest
- Extraction of electron screening potential, reaction rate and so on.

virtual decay of nucleus A->x+S First vertex

