

PHYS 526, 01W, 20370 QUANTUM MECHANICS: ANALYSIS AND APPLICATIONS

COURSE SYLLABUS: SPRING 2026

INSTRUCTOR INFORMATION

Instructor: Dr. William Newton, Professor

Office Location: STC 236

Office Hours: I will schedule time once or twice a week, depending on people's availability, during which you can join me on Zoom to discuss/answer questions. You will complete a poll during the first week to determine the best times.

University Email Address: William.Newton@etamu.edu

Preferred Form of Communication: Email. In emails, please put

“PHYS526 Online” in the subject header. **Note:** I will exclusively use your ETAMU university email addresses for email communication.

Communication Response Time: 24 hours (48 at weekends and holidays).

COURSE INFORMATION

Materials – Textbooks, Readings, Supplementary Readings

Textbook(s) Required: McIntyre, D. (2012), *Quantum Mechanics: A Paradigms Approach*, Addison-Wesley, ISBN-10: 0321765796, ISBN-13: 978-0321765796

Orzel, C. (2010), *How to Teach Quantum Physics to Your Dog*, Oneworld Publications, ISBN-10: 1851687793, ISBN-13: 978-1851687794 (*Nothing in the course depends on this text, but it's a nice piece of popular science communication that is a good source of conceptual understanding*)

The syllabus/schedule are subject to change.

Course Prerequisites

University physics and calculus up to partial differential equations.

More specifically:

Math: Students are required to know mathematics through Calculus 3 or equivalent, or have taken or be concurrently taking the Mathematical Methods for Educators Course (PHYS 530). ***This course makes extensive use of linear algebra, (especially matrix algebra) and complex numbers.*** We will need some differentiation and integration, and the Schrodinger equation, which plays a central role in quantum mechanics, is a second-order differential equation.

Physics: A course in calculus-based physics is required. Some knowledge of basic thermodynamics and statistical mechanics will be an advantage, but I will explain concepts from those subjects when we need to use them.

University catalog description

The history of quantum mechanics including the experimental results that required a new theory of the interaction between light and matter at microscopic level. The uncertainty principle, wave-particle duality and wave mechanics. Applications (including simple calculations) to atomic physics, nuclear physics, semiconductors, lasers; how quantum mechanics has shaped the modern world. The impact of quantum mechanics in our culture; its uses and misuses. Prerequisites: University physics and calculus up to partial differential equations.

Course Description

Quantum theories underpin our modern world. Without quantum mechanics, modern electronic devices such as computers, cell phones, most modern medical imaging and technology, most development in materials science, the World Wide Web, and many other things would not exist. It is the most accurately tested physical theory that exists - giving numerical predictions verified by experiments to more decimal places than our theories of gravity, Newton's laws of motion or our laws of thermodynamics.

Quantum mechanics is also most misunderstood and abused scientific theory. Misunderstanding is not surprising. Quantum mechanics makes claims on the nature of reality at the microscopic level running counter to our everyday experience. Some principles of quantum mechanics have made it into popular culture in a distorted way; for example the, notion

The syllabus/schedule are subject to change.

reality can be affected by the observer. These vague notions are exploited by those who wish to peddle all manner of pseudoscience. It is therefore very important to understand how to interpret quantum mechanics.

In this class, we will learn about the fascinating history of the development of quantum mechanics, the fundamental principles of the theory and the practical and fundamental physics applications, examine strategies aimed at introducing the exciting physics of quantum theory to high school students, and explain the ways in which the theory can be misunderstood and misused.

The purpose of this class is three-fold:

- 1) To give you a working knowledge of the fundamentals of quantum mechanics and its modern applications. To appreciate how it has created the modern world, and that it is the most precisely tested scientific theory.
- 2) To explore the history and interpretation of quantum theory as an archetype of a scientific revolution, in order understand better how scientific theories develop.
- 3) To discuss the teaching of these at a high school level, examine common misconceptions, explore the many tools available on the web that aid us, and to share experiences and resources as a community.

Student Learning Outcomes

At the end of the course students will:

1. Demonstrate knowledge of the history of quantum mechanics, and be able to argue why it is an exemplar of a scientific revolution.
2. Explain the conceptual principles of quantum mechanics, express them mathematically, and apply them to make quantitative predictions in fundamental and applied physical situations.
3. Display knowledge of the research literature on student learning and understanding of quantum mechanics.

Instructional Methods / Activities / Assessments

The details of the course structure are given below. Any changes will be communicated via email and announcements on MyLeo Online. Your TAMUC email account will be used at all times, and it will be your responsibility to check it regularly (at least once every 24 hours).

The syllabus/schedule are subject to change.

Course structure

The course is divided up into 4 units, each containing 3 weeks. Although I refer to them as weeks, some of them span two weeks worth of time. If in doubt, consult the class schedules at the end of the syllabus. Each unit covers a major step in the historical development of quantum mechanics or a major topic. At the end of each unit will be a “catch-up” week to draw breath, complete tutorial homeworks and assessments, and take stock before the next major topic.

Each week’s material becomes available at **12.01 a.m.** on a Friday. Although each week has its associated assignments, I will also make all reading and tutorials/tutorial homeworks available in a separate module from the start of the semester.

Each week you will watch 1-4 mini-lectures, do selected readings from the textbook and complete the various assignments listed below.

The first half of the semester involves an in-depth look at the historical development of quantum mechanics. Most of the reading assignments are during this half, although a number of problem sets will get your math skills up to speed and introduce you to Dirac notation for the second half.

The second half of the semester develops the theory mathematically.

Introductory tasks

The semester starts at **12.01 a.m. Wednesday, January 10th** which is when the introductory material and unit 1 will become available.

Before tackling Unit 1 and the rest of the course, you must complete the following activities which you can find in the introductory module:

- (1) Read the **syllabus**
- (2) Take the **syllabus quiz** to make sure you understand the mechanics of the course. This can be taken *any number of times*. The **syllabus quiz** will not be graded, but it must be completed *with 100% correct answers* before moving on to unit 1.
- (3) **Introduce** yourself to the class on the “**Class Introductions**” discussion thread.
- (4) Create your account on **Perusall** (link given in email and D2L).

The syllabus/schedule are subject to change.

- (5) Complete the availability survey to set Zoom office hours (link given in email and on D2L).

NOTE: You must complete the syllabus quiz with 100% correct answers before access the first, and subsequent, units.

Learning Activities and Assessments

The following describes the assignments you must complete which will contribute to your progress through the course and to your final grade, together with how they will be assessed. There are strong similarities with assessments in other classes in the program, but also some important differences in the details.

Perusall assignments: Perusall is an online system that enables students and instructors to collectively discuss a text as they read. We will be using Perusall for reading assignments and to work collaboratively on tutorials. See schedule at the end of the syllabus and in Perusall itself for the schedule of assignments. You make annotations (notes) as you read to share your thoughts, write questions, and collaborate on discussing and answering tutorial questions. You can respond to each other and upvote each other. Like the discussion forums, I will also contribute.

Submitting non-Perusall assignments: Homework that involves problem solving, pictures, or other material that is difficult to submit as a Word format or similar, may be submitted as hand written work scanned in or photographed. If you use a camera phone to take pictures of your work, a useful app is CamScanner (<https://www.camscanner.com>), which compiles multiple pictures into one document for ease of uploading. There is a free version that I encourage you to check out. It is your responsibility to make sure that your work is legible. You will upload your assignment to D2L under the relevant assignment. Do NOT upload multiple jpg or pdf files – make sure each assignment is a single file.

- **Quizzes** are designed to assess students' comprehension of the reading assignments, mini-lectures and basic knowledge of key principles, often in response to the mini-lectures and reading assignments.

Quizzes are designed to provide you with assessment of your learning. Half of the quiz grade will be awarded just for completing the quiz; the other half will come from your actual quiz score.

You will only be able to take quizzes once. Once you begin taking the quiz, you will have a time limit of one hour to complete it. Once completed, you cannot return to it and revise your answers. You will see your score, however, and what answers you got wrong.

- **Ongoing Discussions** will be conducted each week on the concepts introduced in the reading material and lectures. A number of threads will be opened on particular topics. Sometimes I will ask a question or pose a problem to get you started.

Learning and understanding is significantly enhanced by active engagement in the class through continual discussion of topics. All students are required to participate in the discussions with a number of substantive posts. **Students are required to make 2 substantive posts, in three separate threads, giving your thoughts about the reading or answering the opening questions. In addition, students are required to make one post in the previous week's threads, replying to posts of other students or of myself. That makes a total of 3 posts per week that will be graded.**

Of course, continued discussion beyond the minimum posts required is strongly encouraged. I will pitch into the discussion at various times during the week, answering queries and asking new questions to make sure we discuss all the week's material adequately.

When appropriate, at least one thread will be devoted to discussing how one might teach the week's concepts at the undergraduate level, and for the sharing of your own experiences and resources for the benefit of the teaching community. I hope to make the discussion threads a fun and lively forum throughout the semester!

- **Reading assignments (on Perusall)**

There will be 9 reading assignments. 6 of these will involve original papers from the development of quantum mechanics from Planck, Einstein, Bohr and others. These are sometimes accompanied by a paper analyzing their work. Later in the semester, there will be research papers on how students learn specific concepts in quantum mechanics. I can see how much of the paper you have read and how much time you have spent reading. I will introduce the reading with some prompts to set the discussion going.

- **Tutorials (on Perusall)**

The *syllabus/schedule* are subject to change.

Tutorials are designed to take students step-by-step through a topic with the aim of learning the concepts at a deep level. 8 tutorials will be assigned throughout the semester. You should work through the tutorials on your own. ***Do not use Perusall to write in all your answers.*** Perusall will be used to collaborate by you asking questions, offering potential solutions and constructively analyzing and assessing each others work, building on each others thoughts to reach a complete understanding. You will often need to use math in your comments on Perusall. There are two ways to do it. Perusall supports LaTeX, the document markup language, which makes it easy to write equations seamlessly in the text. Many of you will not be familiar, so I will offer some tips to get you started. I encourage you to try it! The other option, which is also fine, is to upload pictures of written equations, or snapshots of equations prepared in equation editor in Word, for example.

- **Homeworks and Assessments**

- **Homeworks:** in the first unit, you will complete a number of problem sheets covering the basic mathematics required understand the formal presentation of the theory coming up in the second half of the semester. After then, there will be two homeworks in units 3 and 4 respectively involving textbook problems.
- **Assessments:** These are longer worksheets/problem sheets which either follow up a tutorial (in the case of the first one) or apply the learning of a whole unit to a physical situation (such as quantum encryption in unit 3 and Larmor precession of atoms in unit 4).

These are not on Perusall. You can discuss problems that arise in the appropriate discussion threads.

When to complete assignments: See the course calendar coming up!

Try to keep to these deadlines. However, I know your lives are tremendously busy and there will be times when you are overwhelmed. I will always be flexible with due dates if you just give me a heads up when you need to be.

Grading

We will use specifications-based grading in this course, in which, rather than assigning numerical scores to each assignment (which, although prevalent, are hard to standardize fairly), you simply receive a passing credit for completing an assignment to an acceptable standard, which will be specified with each assignment. Anyone who makes a good-faith attempt at all assignments will earn at least a B in the class.

For each assignment you either pass or you do not.

Quizzes: You pass a quiz by making more than 70%.

Discussion posts: A passing grade for a week's discussion forums requires making all required posts, and each post to be substantial in the sense that it contributes constructively to the conversation (which includes asking questions so long as they include context, justification, and details of what the poster has done to try and answer them).

Perusall assignments (Reading and tutorials): The system automatically calculates a percentage grade based on number and quality of annotations, interacting with each other, and time spent reading. I have set a threshold for passing.

Homeworks: A good faith attempt has been made, that is, the student has completed all of it, gets the right answer more often than not, and thoroughly explains their thoughts and makes clear their working.

Assessments: The student scores more than 70% on the assessment.

If at any point you do not feel the grade fairly reflects your performance, please let me know.

Your final grade will be assigned based on the following scheme:

You will get a A if you:

Meet all the requirements of getting a B, but in addition:

Pass 5 out of 5 homeworks

Get an average of 90% or more on the three assessments.

You will get a B if you:

Pass 8 out of 9 Perusall reading assignments

Pass 6 out of 8 Perusall tutorial assignments

Pass 4 out of 5 homeworks

Pass 10 out of 12 quizzes

Meet the requirements in 10 out of 12 discussion forums

Get an average of 70% or more on the three assessments.

The syllabus/schedule are subject to change.

You will get a C if you:

Pass 6 out of 9 Perusall reading assignments
Pass 5 out of 8 Perusall tutorial assignments
Pass 3 out of 5 homeworks
Pass 8 out of 12 quizzes
Meet the requirements in 8 out of 12 discussion forums
Get 70% or more on at least one assessment.

You will get a D if you:

Pass 5 out of 9 Perusall reading assignments
Pass 4 out of 8 Perusall tutorial assignments
Pass 2 out of 5 homeworks
Pass 6 out of 12 quizzes
Meet the requirements in 6 out of 12 discussion forums
Get 60% or more on at least one assessment.

Course Outline/Calendar

This schedule is tentative.

The dates given in the first column are what I'm defining to be the begin and end dates of each week, from when the week's material becomes available to when the quiz and discussion posts are due.

During weeks 1-6 we will also practice some necessary background math and introduce Dirac notation. We will mostly be reading journal articles for weeks 1-6, including some primary sources.

Week	Topic
1	19 th C physics, black body radiation/Max Planck/the quantum
2	Einstein/Photoelectric effect
3	The Bohr-Sommerfeld atom
4	Heisenberg/Matrix mechanics, uncertainty principle
5	Schrödinger/Wave mechanics/wavefunctions
6	The Copenhagen Interpretation/Intro to quantum states
7	Quantum States/Stern-Gerlach Experiment
8	Quantum States/Stern-Gerlach Experiment II/
9	Operators/Quantum Zeno
10	Quantum tunneling/commutation
11	Time Dependence
12	Entanglement, EPR and Bell's Theorem

The syllabus/schedule are subject to change.

Schedule of specific assignments

	READING	TUTORIAL	HOMEWORK	ASSESSMENTS
WEEK 1	Planck 1900,1901	Dirac 1	Complex numbers	
WEEK 2	Einstein 1905	Dirac 2	Eigenvalues,eigenvectors	
WEEK 3	Bohr 1913	Dirac 3	Correspondance Principle*	
			HW TURN-IN 1	
WEEK 4	Heisenberg 1925, Born 1925 Fedak 2009	Dirac 4		Assessment: Dirac Notation Tutorial
WEEK 5	Schrodinger 1926 McKagan 2008			
WEEK 6	Heisenberg 1926 Born 1926 Pais 1982 Johansson 2008			
			HW TURN-IN 2	ASSESSMENT TURN IN
WEEK 7		Stern-Gerlach	Spins 1	Assessment: Quantum Key
WEEK 8		Spins Lab part 1		
WEEK 9	Zhu 2011	Spins Lab part 2		
			HW TURN-IN 3	ASSESSMENT TURN IN
WEEK 10		Quantum Mouse	Operators*	Assessment: Lamor Precession
WEEK 11		2-state Time Dependence		
WEEK 12	Einstein 1935 Mermin 1985			
			HW TURN-IN 4	ASSESSMENT TURN IN

+ WEEKLY QUIZZES AND DISCUSSION POSTS

The *syllabus/schedule* are subject to change.

COURSE DUE DATES: DISCUSSION POSTS

Each week you must post at least **one** post in each of **two different** discussion threads, giving your initial thoughts on the subject of the thread or any conceptual or mathematical difficulties you are having with the thread subject. You must also post at least **one** follow up posts in your choice of the **previous week's** threads, responding to another person's comments, or one of my comments. That makes a total of **three** posts per week that will be graded.

Discussion threads for a particular week open at **12.01 a.m.** each **Friday** with the rest of the week's material. To receive credit for your posts, they must be made within the time-frame outlined below. The threads remain open until the end of the semester.

WEEK	DISCUSSION THREADS OPEN	2 POSTS IN DIFFERENT THREADS DUE	1 FOLLOW-UP POST DUE
Introductions	Jan 12		
1	Jan 16	Jan 25	Feb 1
2	Jan 30	Feb 8	Feb 15
3	Feb 6	Feb 15	Feb 22
4	Feb 20	Mar 1	Mar 8
5	Feb 27	Mar 8	Mar 15
6	Mar 6	Mar 15	Mar 22
Sprint Break March 9-13			
7	Mar 20	Mar 29	Apr 5
8	Mar 27	Apr 5	Apr 12
9	Apr 3	Apr 12	Apr 19
10	Apr 10	Apr 19	Apr 26
11	Apr 17	Apr 26	May 3
12	Apr 24	May 3	

The *syllabus/schedule* are subject to change.

COURSE DUE DATES: QUIZZES & PERUSALL ASSIGNMENTS

The introductory week's **syllabus quiz** becomes available on **Wednesday Jan 12th at 12.01 a.m.** For the syllabus quiz only, you may take the quiz as many times as you like. You will only gain access to the first week of material once you have made 100% on the syllabus quiz and have completed. Quizzes on each week's reading material become available at **12.01 a.m.** each **Friday** along with the rest of the week's material, and close at **11.59 p.m. (midnight)** the following **Sunday, 9 days later.**

NOTE: Apart from the syllabus quiz, quizzes can only be attempted once. Once you begin taking the quiz, you will have a time limit of one hour to complete it. Once completed, you cannot return to it and revise your answers.

Perusall assignments – tutorials and reading – are available the same day as the quiz, but are due one week after the quiz (so you have just over 2 weeks to complete the perusal assignments, except for the first ones for which you have just over 3 weeks). NOTE: Not all weeks have Reading or Tutorial Perusall assignments – see assignment schedule for specifics.

WEEK	QUIZ AVAILABLE/READING AND TUTORIAL ANNOTATION ON PERUSALL STARTS	QUIZ DUE	READING AND TUTORIAL ANNOTATION ON PERUSALL ENDS
	Jan 12 (Syllabus Quiz)	Access to course requires completion	
1	Jan 16	Jan 25	Feb 1
2	Jan 30	Feb 8	Feb 15
3	Feb 6	Feb 15	Feb 22
4	Feb 20	Mar 1	Mar 8
5	Feb 27	Mar 8	Mar 15
6	Mar 6	Mar 15	Mar 22
Spring Break March 13-17			
7	Mar 20	Mar 29	Apr 5
8	Mar 27	Apr 5	Apr 12
9	Apr 3	Apr 12	Apr 19
10	Apr 10	Apr 19	Apr 26
11	Apr 17	Apr 26	May 3
12	Apr 24	May 3	

The syllabus/schedule are subject to change.

COURSE DUE DATES: HOMEWORKS/ASSESSMENTS

When a new week has associated homework, it becomes available at the start of that week, on **Friday at 12.01 a.m.** They are due at **11:59pm** on the **Sunday 9 days later**. All homeworks/assessments for a given module are available as soon as the module starts so you have the option of working ahead if time permits.

WEEK	HW AVAILABLE	HW DUE
1	Jan 16	Feb 15
2	Jan 30	
3	Feb 6	
4	Feb 20	Mar 15
5	Feb 27	
6	Mar 6	
Spring Break March 11-15		
7	Mar 20	Apr 12
8	Mar 27	
9	Apr 3	
10	Apr 10	May 3
11	Apr 17	
12	Apr 24	

TECHNOLOGY REQUIREMENTS

LMS

All course sections offered by East Texas A&M University have a corresponding course shell in the myLeo Online Learning Management System (LMS). Below are technical requirements

LMS Requirements:

<https://community.brightspace.com/s/article/Brightspace-Platform-Requirements>

LMS Browser Support:

https://documentation.brightspace.com/EN/brightspace/requirements/all/browser_support.htm

The syllabus/schedule are subject to change.

ACCESS AND NAVIGATION

You will need your campus-wide ID (CWID) and password to log into the course. If you do not know your CWID or have forgotten your password, contact the Center for IT Excellence (CITE) at 903.468.6000 or helpdesk@etamu.edu

Note: Personal computer and internet connection problems do not excuse the requirement to complete all course work in a timely and satisfactory manner. Each student needs to have a backup method to deal with these inevitable problems. These methods might include the availability of a backup PC at home or work, the temporary use of a computer at a friend's home, the local library, office service companies, Starbucks, a ETAMU campus open computer lab, etc.

COMMUNICATION AND SUPPORT

If you have any questions or are having difficulties with the course material, please contact your instructor.

Technical Support

If you are having technical difficulty with any part of Brightspace, please contact Brightspace Technical Support at 1-877-325-7778. Other support options can be found here:

<https://community.brightspace.com/support/s/contactsupport>

Interaction with Instructor Statement

COURSE AND UNIVERSITY PROCEDURES/POLICIES

Course Specific Procedures/Policies

Syllabus Change Policy

The syllabus is a guide. Circumstances and events, such as student progress, may make it necessary for the instructor to modify the syllabus during the semester. Any changes made to the syllabus will be announced in advance.

The *syllabus/schedule are subject to change*.

University Specific Procedures

Student Conduct

All students enrolled at the University shall follow the tenets of common decency and acceptable behavior conducive to a positive learning environment. The Code of Student Conduct is described in detail in the Student Guidebook.

<https://inside.etamu.edu/admissions/onestopshop/undergraduateAdmissions/studentGuidebook.aspx>

Students should also consult the Rules of Netiquette for more information regarding how to interact with students in an online forum:

<https://www.britannica.com/topic/netiquette>

ETAMU Attendance

For more information about the attendance policy please visit the [Attendance](#) webpage and [Procedures 13.99.99.R0.01](#)

<https://inside.etamu.edu/admissions/registrar/generalInformation/attendance.aspx>

Academic Integrity

Students at East Texas A&M University are expected to maintain high standards of integrity and honesty in all of their scholastic work. For more details and the definition of academic dishonesty see the following procedures:

<https://inside.etamu.edu/aboutus/policiesproceduresstandardsstatements/rulesprocedures/13students/graduate/13.99.99.R0.10.pdf>

<https://inside.etamu.edu/academics/graduateSchool/faculty/GraduateStudentAcademicDishonestyForm.pdf>

Students with Disabilities-- ADA Statement

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you have a disability requiring an accommodation, please contact:

Office of Student Disability Resources and Services

East Texas A&M University
Velma K. Waters Library Rm 162

The syllabus/schedule are subject to change.

Phone (903) 886-5150 or (903) 886-5835
Fax (903) 468-8148
Email: studentdisabilityservices@etamu.edu

Website: [Student Disability Services](#)

<https://www.etamu.edu/student-disability-services/>

Nondiscrimination Notice

East Texas A&M University will comply in the classroom, and in online courses, with all federal and state laws prohibiting discrimination and related retaliation on the basis of race, color, religion, sex, national origin, disability, age, genetic information or veteran status. Further, an environment free from discrimination on the basis of sexual orientation, gender identity, or gender expression will be maintained.

Campus Concealed Carry Statement

Texas Senate Bill - 11 (Government Code 411.2031, et al.) authorizes the carrying of a concealed handgun in East Texas A&M University buildings only by persons who have been issued and are in possession of a Texas License to Carry a Handgun. Qualified law enforcement officers or those who are otherwise authorized to carry a concealed handgun in the State of Texas are also permitted to do so. Pursuant to Penal Code (PC) 46.035 and ETAMU Rule 34.06.02.R1, license holders may not carry a concealed handgun in restricted locations.

For a list of locations, please refer to the [Carrying Concealed Handguns On Campus](#)

document and/or consult your event organizer.

Web url:

<http://www.etamu.edu/aboutUs/policiesProceduresStandardsStatements/rulesProcedures/34SafetyOfEmployeesAndStudents/34.06.02.R1.pdf>

Pursuant to PC 46.035, the open carrying of handguns is prohibited on all ETAMU campuses. Report violations to the University Police Department at 903-886-5868 or 9-1-1.

East Texas A&M University Supports Students' Mental Health

The Counseling Center at ETAMU, located in the Halladay Building, Room 203, offers counseling services, educational programming, and connection to community resources for students. Students have 24/7 access to the Counseling Center's crisis assessment services by calling 903-886-5145. For more information regarding Counseling Center events and confidential services, please visit www.etamu.edu/counsel

The syllabus/schedule are subject to change.

Mental Health and Well-Being

The university aims to provide students with essential knowledge and tools to understand and support mental health. As part of our commitment to your well-being, we offer access to Telus Health, a service available 24/7/365 via chat, phone, or webinar. Scan the QR code to download the app and explore the resources available to you for guidance and support whenever you need it.

<http://telusproduction.com/app/5108.html>

AI use policy [Draft 2, May 25, 2023]

East Texas A&M University acknowledges that there are legitimate uses of Artificial Intelligence, ChatBots, or other software that has the capacity to generate text, or suggest replacements for text beyond individual words, as determined by the instructor of the course.

Any use of such software must be documented. Any undocumented use of such software constitutes an instance of academic dishonesty (plagiarism). Individual instructors may disallow entirely the use of such software for individual assignments or for the entire course. Students should be aware of such requirements and follow their instructors' guidelines. If no instructions are provided the student should assume that the use of such software is disallowed.

In any case, students are fully responsible for the content of any assignment they submit, regardless of whether they used an AI, in any way. This specifically includes cases in which the AI plagiarized another text or misrepresented sources.

13.99.99.R0.03 Undergraduate Academic Dishonesty

13.99.99.R0.10 Graduate Student Academic Dishonesty